Thursday 25 April 2024

On This Day in Math - April 25

  



Pure mathematics is the world's best game.
It is more absorbing than chess,
more of a gamble than poker,
and lasts longer than Monopoly.
It's free.
It can be played anywhere -
Archimedes did it in a bathtub.
~Richard J. Trudeau, Dots and Lines



The 115th day of the year; 115 is the 26th "Lucky" number. Lucky numbers are produced by a sieve method created by Stan Ulam around 1955. The term was introduced in 1955 in a paper by Gardiner, Lazarus, Metropolis and Ulam. They suggest also calling its defining sieve, "the sieve of Josephus Flavius" because of its similarity with the counting-out game in the Josephus problem. They are interesting explorations for both elementary and advanced students. Whether there are an infinite number of primes in the lucky numbers is still an open question.

115 (or 5! - 5) is the smallest composite number of the form p! - p, where p is prime.

\( \pi (115) = 30 \) occurs at the 115th decimal digit of pi. It is the smallest integer n, in which the number of primes less than n occurs at the nth decimal place of pi. Once more for the HS students, there are 30 prime numbers less than 115, and the 115th &116th decimal digits of pi are 3, 0, so the two digit value beginning at the 115th decimal place counts the number of primes less than 115. There is no smaller number for which this is true. You may want to find the next one.


EVENTS

1611 Galileo (1564 1642) visited Rome at the height of his fame in 1611 and was made the sixth member of the Accademia dei Lincei (Lynx Society) at a banquet on (14 Apr/25Apr). The word 'telescopium' was first applied to his instrument at this dinner. He showed sunspots to several people. The term “telescope” was introduced by Prince Federico Cesi at a banquet given in Galileo’s honor. It derives from the Greek “tele” meaning “far away” and “skop´eo” meaning “to look intently.” For a change, a term which derives from the Greek was actually coined by a Greek, namely Ioannes Demisiani. [Willy Ley, Watchers of the Skies, p. 112]*VFR Thony Christie at the Renaissance Mathematicus blog has an enjoyable review of the telescope and how it got its name.

Founded in the Papal States in 1603 by Federico Cesi, the academy was named after the lynx, an animal whose sharp vision symbolizes the observational prowess that science requires. Galileo Galilei was the intellectual centre of the academy and adopted "Galileo Galilei Linceo" as his signature. "The Lincei did not long survive the death in 1630 of Cesi, its founder and patron", and "disappeared in 1651".

During the nineteenth century, it was revived, first in the Vatican and later in the nation of Italy. Thus the Pontifical Academy of Science, founded in 1847, claims this heritage as the Accademia Pontificia dei Nuovi Lincei ("Pontifical Academy of the New Lynxes"), descending from the first two incarnations of the Academy. Similarly, a lynx-eyed academy of the 1870s became the national academy of Italy, encompassing both literature and science among its concerns.




1661 Two days after attending the Coronation of Charles II, John Evelyn attends another spectacular, "to the Society where were many diverse experiments in Mr. Boyle's Pneumatic Engine." *Lisa Jardine, Ingenious Pursuits, pg 54


1832 In a debate over the apportionment of the House, Senator Dickerson of New Jersey invoked the language of Berkeley’s Analyst when he railed against using Jefferson’s apportionment method wherein fractions are ignored: “These quasi-representatives, these infinitesimal, evanescent Representatives, these ideal Representatives, these ghosts of Representatives, after being counted in order to give the favored States their full proportion of a House of 250, are dismissed the service.” *VFR (for my students.) Bishop Berkeley wrote a paper called "The Analyst" in which he tried to refute Newton's use of fluxions (derivatives). The idea that we treat "h" as not zero to cancel in the difference quotient, then dismiss it in the final limit disturbed him (and lots of others).. He wrote, "And what are these fluxions? The velocities of evanescent increments? They are neither finite quantities, nor quantities infinitely small, nor yet nothing. May we not call them ghosts of departed quantities?"

Bishop George Berkeley




1810 Exactly a week after he was elected a member of the Berlin Academy of Sciences, Wilhelm von Humboldt sends Gauss an offer of 1500 Thalers a year to serve as ordentliches Mitglied of the Academy with the assurance that, "...you are only requested to lend your name as a full professor to the new university, and, as much as your leisure and health allow, to teach a course from time to time." *Dunnington, Gray & Dohse; Carl Friedrich Gauss: Titan of Science  For US readers, the word Thalers is the origin of the name of US currency, a truncation of the origin,  Joachimstaler, of the silver in Spanish Silver coins which were commonly used for currency in the English colonies.  

Humboldt was a German philosopher, linguist, government functionary, diplomat, and founder of the Humboldt University of Berlin, which was named after him in 1949 (and also after his younger brother, Alexander von Humboldt, a naturalist).

Statue of Wilhelm von Humboldt outside Humboldt University, Unter den Linden, Berlin




1828 Christopher Hansteen, Director of the Observatory in Christiana, set out from Berlin to confirm his belief that the earth had more than one magnetic axis. 


1834 William Whewell In a single letter to Faraday on 25 April, 1834;  invented the terms cathode, anode and ion. The letter is/was on display at the Wren Library at Trinity College, Cambridge, UK. He is known for creating scientific words. He founded mathematical crystallography and developed Mohr's classification of minerals. He created the words scientist and physicist by analogy with the word artist. They eventually replaced the older term natural philosopher. (actually the use of scientist was a very slow process often not well received. see more of the interesting story here) Other useful words were coined to help his friends: biometry for Lubbock; Eocine, Miocene and Pliocene for Lyell; and for Faraday, anode, cathode, diamagnetic, paramagnetic, and ion (whence the sundry other particle names ending -ion).

"I have considered the two terms you want to substitute for eisode and exode , and upon the whole I am disposed to recommend instead of them anode and cathode ; these words may signify eastern and western way, just as well as the longer compounds which you mention, which derive their meaning from words implying rising and setting, notions which anode and cathode imply more simply. But I will add that as your object appears to me to be to indicate opposition of direction without assuming any hypothesis which may hereafter turn out to be false, up and down, which must be arbitrary consequences of position on any hypothesis, seem to be free from inconvenience, even in their simplest sense. I may mention too that anodos and cathodos are good genuine Greek words, and not compounds coined for the purpose. "





In 1882, a perpetual motion machine was patented by John Sutliff in the U.S. (No. 257,103). *TIS (Wouldn't you love to be the guy that approved that one.)

And if you think this is just because they didn't really know much in 1882, 77 years later, ...Yep, they did it again in 1959 (Sputnik is in the sky, the space race is on, and if you think patent examiners didn't know anything still, remember that Einstein had been a patent examiner between these two events..  
Dean's Sky hook of 1959 was approved on May 19.  



1943  On this day in 2038, Easter Sunday will occur at its latest possible date. The last time Easter was on April 25 was in 1943.

In 1953, Francis Crick and James Watson reached their conclusion about the double helix structure of the DNA molecule. They made their first announcement on Feb 28, and their paper, A Structure for Deoxyribose Nucleic Acid, was published in the 25 Apr 1953 issue of journal Nature. *TIS
Greg Ross at Futility Closet posted a note Crick created to respond to the deluge of requests the discovery created:
Deluged with mail after his discovery of the double helix, Francis Crick began sending a printed card in response to invitations:
crick demurral

1961 Noyce patent issued for the semiconductor. *VFR ( Noyce filed for the patent on "Semiconductor Device-and-Lead Structure" on July 30, 1959.
 ---nicknamed "the Mayor of Silicon Valley", co-founded Fairchild Semiconductor in 1957 and Intel in 1968. He is also credited (along with Jack Kilby) with the invention of the integrated circuit or microchip. While Kilby's invention was six months earlier, neither man rejected the title of co-inventor. Noyce was also a mentor and father-figure to an entire generation of entrepreneurs, including Steve Jobs at Apple, Inc
*Wik





1990 The Hubble Space Telescope is released from the payload bay of Discovery *David Dickinson ‏ @Astroguyz
 It would be almost another month (5/20/90) before the first image ("first light")  shows the 50% sharper images than Earth based images. 



2038 The next time that Easter will occur on April 25, the latest possible date. The last time Easter was on April 25 was in 1943.


BIRTHS

1769 Sir Marc Isambard Brunel French-born English engineer and inventor who solved the historic problem of underwater tunneling. A prolific inventor, Brunel designed machines for sawing and bending timber, boot making, stocking knitting, and printing. As a civil engineer, his designs included the Île de Bourbon suspension bridge and the first floating landing piers at Liverpool. In 1818, however, Brunel patented the tunneling shield, a device that made possible tunneling safely through waterbearing strata. On 2 Mar 1825 operations began for building a tunnel under the Thames River between Rotherhithe and Wapping. The Thames Tunnel was eventually opened on 25 Mar 1843. It has a twin horseshoe cross-section with height of 23-ft (7m), width of 37-ft (11m), and total length 1,506-ft (406m) *Wik





1836   Laroy S. Starrett (25 Apr, 1836-23 Apr 1922) was an American inventor and manufacturer who held over 100 patents, many for fine measurement tools, including the micrometer screw guage (patented 29 Jul 1890) that is familiar to present-day machinists and physics lab workers. His first patent (23 May 1865) was for a meat chopper, which he had manufactured for him, but marketed it himself. This product was successful, and his next patents for shoe studs and hooks provided enough income to establish his own factory. He began making a combination square. This was a try-square with a head that could be moved and clamped at any position along the blade, which he patented 26 Feb 1879. He added products including rules, surface guages, and other small tools. His business became the world's largest in his specialty. When he died, it had over five acres of production space, and 1,000 workers. *TIS  The company is still making quality instruments today.  I've owned a few fine Starrett micrometers and other gauging equipment in my days.





1849 Christian Felix Klein (25 April 1849 – 22 June 1925) was a German mathematician, known for his work in group theory, complex analysis, non-Euclidean geometry, and on the connections between geometry and group theory. His 1872 Erlangen Program, classifying geometries by their underlying symmetry groups, was a hugely influential synthesis of much of the mathematics of the day.*Wik He recommended the teaching of calculus in the German secondary schools. *VFR
[In mathematics, the Klein bottle is a non-orientable surface, informally, a surface (a two-dimensional manifold) in which notions of left and right cannot be consistently defined. Other related non-orientable objects include the Möbius strip and the real projective plane. Whereas a Möbius strip is a surface with boundary, a Klein bottle has no boundary. (For comparison, a sphere is an orientable surface with no boundary.) The Klein bottle was first described in 1882 by the German mathematician Felix Klein. It is sometimes claimed that it was originally named the Kleinsche Fläche "Klein surface" and that this was incorrectly interpreted as Kleinsche Flasche "Klein bottle," which ultimately led to the adoption of this term in the German language as well.*Wik




1874 Guglielmo Marconi Italian inventor, born in Bologna. He was a physicist, who invented the wireless telegraph in 1935 known today as radio. Nobel laureate (1909). In 1894, Marconi began experimenting on the "Hertzian Waves" (the radio waves Hertz first produced in his laboratory a few years earlier). Lacking support from the Italian Ministry of Posts and Telegraphs, Marconi turned to the British Post Office. Encouraging demonstrations in London and on Salisbury Plain followed. Marconi obtained the world's first patent for a system of wireless telegraphy, in 1897, and opened the world's first radio factory at Chelmsford, England in 1898. In 1900 he took out his famous patent No. 7777 for "tuned or syntonic telegraphy." *TIS




1882, the photophone was demonstrated by Alexander Graham Bell and Charles Sumner Tainter. In their device, a mirrored silver disc was made to vibrate by speech from a speaking tube. Light reflected off the disc was focused by a parabolic dish onto a selenium photocell. The variations in the reflected light were converted into electrical signals carried to headphones.
 It was invented jointly by Alexander Graham Bell and his assistant Charles Sumner Tainter on February 19, 1880, at Bell's laboratory at 1325 L Street in Washington, D.C. Both were later to become full associates in the Volta Laboratory Association, created and financed by Bell.
While honeymooning in Europe with his bride Mabel Hubbard, Bell likely read of the newly discovered property of selenium having a variable resistance when acted upon by light, in a paper by Robert Sabine as published in Nature on 25 April 1878. In his experiments, Sabine used a meter to see the effects of light acting on selenium connected in a circuit to a battery. However Bell reasoned that by adding a telephone receiver to the same circuit he would be able to hear what Sabine could only see.

A photophone receiver and headset, one half of Bell and Tainter's optical telecommunication system of 1880







1898 Pavel Sergeevich Aleksandrov  (7 May 1896 – 16 November 1982) was a Soviet mathematician who made important contributions to the field of topology (the study of related physical or abstract elements that remain unchanged under certain distortions) and one of the founders of the theory of compact and bicompact spaces. Aleksandrov introduced many of the basic concepts of topology, such as the notion that an arbitrarily general topological space can be approximated to an arbitrary degree of accuracy by simple geometric figures such as polyhedrons. Giving support to international cooperation, he supervised the publication of an English-Russian dictionary of mathematical terminology (1962).*TIS



1879 Edwin Bidwell Wilson (April 25, 1879 – December 28, 1964)  was an American mathematician, statistician, physicist and general polymath. As a student and protege, of Willard Gibbs at Yale he codified the physicist’s lectures on vector analysis into a textbook (1901) that profoundly influenced the use and notation of the subject. In 1912 he published a comprehensive text on advanced calculus that was the first really modern book of its kind in the U.S. *VFR 
Wilson had a distinguished academic career at Yale and MIT, followed by a long and distinguished period of service as a civilian employee of the US Navy in the Office of Naval Research. In his latter role, he was awarded the Distinguished Civilian Service Award, the highest honorary award available to a civilian employee of the US Navy. Wilson made broad contributions to mathematics, statistics and aeronautics, and is well-known for producing a number of widely used textbooks. He is perhaps best known for his derivation of the eponymously named Wilson score interval, which is a confidence interval used widely in statistics.




1900 Wolfgang Pauli, Austrian-born American winner of the Nobel Prize for Physics in 1945 for his discovery in 1925 of the Pauli exclusion principle, which states that in an atom no two electrons can occupy the same quantum state simultaneously. This principle clearly relates the quantum theory to the observed properties of atoms. Pauli was known for having an acid tongue. He was once challenged by another arrogant physicist, Lev Davidovich Landau who had explained his ideas to Pauli, whom he knew was skeptical of his ideas. Landau asked, "Well now do you think my ideas are nonsense?". Pauli's reply was, "No, not at all.; Your ideas are so confused I can't tell if they are nonsense, or not."





1903  Andrey Nikolayevich Kolmogorov  ( 25 April 1903 – 20 October 1987)  mathematician whose basic postulates for probability theory that have continued to be an integral part of analysis. This work had diverse applications such as his study of the motion of planets (1954), or the turbulent air flow from a jet engine (1941). In topology, he investigated cohomology groups. He made a major contribution to answering the probability part of Hilbert's Sixth Problem, and completely resolved (1957) Hilbert's Thirteenth Problem. Kolmogorov was active in a project to provide special education for gifted children, not only by writing textbooks and in teaching them, but in expanding their interests to be not necessarily in mathematics, but with literature, music, and healthy activity such as on hikes and expeditions. *TIS
The theory of probability as mathematical discipline can and should be developed from axioms in exactly the same way as Geometry and Algebra."
*Foundations of the Theory of Probability
A nice article about him as at the Nautilus (issue 004)




1918 Gerard Henri de Vaucouleurs (25 Apr 1918; 7 Oct 1995 at age 77) French-born U.S. astronomer whose pioneering studies of distant galaxies contributed to knowledge of the age and large-scale structure of the universe. He produced three Reference Catalogues of bright galaxies (1964, 1976, 1991). Each was a homogenization of data from widely different sources, so that the catalogues would not be merely finding lists or data collection lists, but astrophysically useful databases. Using data in the Reference Catalogues, he was able to develop new distance indicators and refine others. His unique philosophy on distance matters was "spreading the risks," that is, applying as many different and independent techniques as possible to check for scale and zero-point errors. *TIS



1935 Phillip James Edwin Peebles CC OM FRS (born April 25, 1935) is a Canadian-American astrophysicist, astronomer, and theoretical cosmologist who is currently the Albert Einstein Professor in Science, emeritus, at Princeton University. He is widely regarded as one of the world's leading theoretical cosmologists in the period since 1970, with major theoretical contributions to primordial nucleosynthesis, dark matter, the cosmic microwave background, and structure formation.

Peebles was awarded half of the Nobel Prize in Physics in 2019 for his theoretical discoveries in physical cosmology. He shared the prize with Michel Mayor and Didier Queloz for their discovery of an exoplanet orbiting a sun-like star. While much of his work relates to the development of the universe from its first few seconds, he is more skeptical about what we can know about the very beginning, and stated, "It's very unfortunate that one thinks of the beginning whereas in fact, we have no good theory of such a thing as the beginning."

Peebles has described himself as a convinced agnostic.






DEATHS


1472 Leon Battista Alberti (Feb. 14, 1404 Genoa April 25, 1472 also given as April 20) Artist and geometrist. As an artist, he "wrote the book," the first general treatise Della Pictura (1434) on the the laws of perspective, establishing the scienceof projective geometry. Alberti also worked on maps (again involving his skill at geometrical mappings) and he collaborated with Toscanelli who supplied Columbus with the maps for his first voyage. He also wrote the first book on cryptography which contains the first example of a frequency table.*TIS
"When I investigate and when I discover that the forces of the heavens and the planets are within ourselves, then truly I seem to be living among the gods. "


1744 Anders Celsius (27 November 1701 – 25 April 1744) Swedish astronomer, physicist and mathematician who is famous for the temperature scale he developed. Celsius was born in Uppsala where he succeeded his father as professor of astronomy in 1730. It was there also that he built Sweden's first observatory in 1741. He and his assistant Olof Hiortner discovered that aurora borealis influence compass needles. Celsius' fixed scale (often called centigrade scale) for measuring temperature defines zero degrees as the temperature at which water freezes, and 100 degrees as the temperature at which water boils. This scale, an inverted form of Celsius' original design, was adopted as the standard and is still used in almost all scientific work. *TIS
There is a Plaque to Anders Celsius in the church at Gamla Uppsala



1840 Siméon-Denis Poisson ( 21 June 1781 – 25 April 1840) French mathematician known for his work on definite integrals, advances in Fourier series, electromagnetic theory, and probability. The Poisson distribution (1837) describes the probability that a random event will occur in a time or space interval under the conditions that the probability of the event occurring is very small, but the number of trials is very large so that the event actually occurs a few times. His works included applications to electricity and magnetism, and astronomy. He is also known for the Poisson's integral, Poisson's equation in potential theory, Poisson brackets in differential equations, Poisson's ratio in elasticity, and Poisson's constant in electricity.





1999 Sir William Hunter McCrea (13 Dec 1904, 25 Apr 1999 at age 94)
was an Irish theoretical astrophysicist whose early work was in quantum physics, relativity and pure mathmatics, but he gradually turned to applying theoretical physics in astronomy. He ranged from considering the stellar atmospheres, planet formation, cosmology and indeed, the formation of stars and the universe. He was an early advocate that stars have a high hydrogen content. He studied gas dynamics, as in the formation of hydrogen in molecular form in dusty interstellar clouds, and developed a theory of the transition from increasing density to conditions sufficient for gravitational collapse and possible star formation. Although he at first was open-minded to the steady state theory of the universe proposed by Hermann Bondi, Thomas Gold and Fred Hoyle, McCrea's work and others accumulated evidence for the Big Bang theory.*TIS
"Our experience shows that not everything that is observable and measurable is predictable, no matter how complete our past observations may have been. "






Credits :
*CHM=Computer History Museum
*FFF=Kane, Famous First Facts
*NSEC= NASA Solar Eclipse Calendar
*RMAT= The Renaissance Mathematicus, Thony Christie
*SAU=St Andrews Univ. Math History
*TIA = Today in Astronomy
*TIS= Today in Science History
*VFR = V Frederick Rickey, USMA
*Wik = Wikipedia
*WM = Women of Mathematics, Grinstein & Campbell








Wednesday 24 April 2024

Pythagorean Parabolas

 


I recently came across a note on an Annual Meeting of the Rocky Mountain Section of the MAA in 1923. Among the list of presentations was one by W. J. Hazzard, Professor at the Colorado School of Mines on the topic of "Parabolic Grouping of Pythagorean triangles."
I was a little familiar with Prof. Hazard as I had leapfrogged off one of his old posts in the Mathematics Teacher on methods of solving a quadratic equation to write a little about the history of solving quadratics in twenty or so different ways, which I hope someday to reduce to blog posts, but not today. 
I even had a copy of one of the good Professor's books in my collection of old math books, but I had not read, nor was I aware of the idea he spoke of.  With a few words of guidance from a "very" brief coverage in the article, I was able to extract at least a little that may be of interest to anyone who enjoys Pythagorean relations, and especially if you teach high school math.

If you put one acute vertex of a right triangle at the origin and lay it out so that the shorter leg lies along the positive x-axis, the other vertex will be at the point (a,b) as determined by the two legs of the triangle.  In the graph I have shown the  position of a 3-4-5 triangle and a 5-12-13 triangle to make my meaning clear.

A natural question is, "So What?"  But if we look at several of the points determined by the upper vertex, and select out only some "related" Pythagorean triples, we notice a pattern.  In the image at right the points represent the set of triples 3-4-5; 5-12-13; 7-24-25; and 9-40-41.  (Any teacher or student who is not aware, there is a simple trick to find an infinite number of these triangles with a longer side one less than the hypotenuse.  Just take any odd number to be the short leg, square it, and then divide by two and round up to the next whole for the hypotenuse. For example, 11 is a good odd number, and its square is 121.  If we divide 121 by 2 we get 60.5, which is between 60 and 61, and 11, 60, 61 is a Pythagorean triple.) 
All the points lie on a parabola y= 1/2 x2 - 1/2 .  Since the focal length is 1/(4A), with A = 1/2, the focus must be a distance of 1/2 unit above the vertex, making the focal point at the origin. If we think about the definition of a parabola as the set of points equally distant from a focus and directrix, we realize the line of the directrix must be the line y = -1 so that, for instance the point (3,4) which is 5 units from the origin/focus will also be 5 units away from the directrix.  

Admittedly that is a pretty small (although infinity large) sub-set of the Pythagorean triples.  What would happen if we plotted other triangles like 8-15-17?  It turns out they are not on the parabola drawn... they are on another one.  In fact, all the triangles which have a longer leg two less than the hypotenuse will also have a focus at the origin, and the directrix will be ... yeah you knew it would be, y = - 2.  That makes the focus at (0,-1).   You can write the equation with ease for the parabola passing through any of these Pythagorean vertices, and all the ones with a common difference between the longer leg and hypotenuse share a parabola.

All the triples I've picked so far have been primitive triples.  A good question to ask is what would happen if we picked, say, a 6-8-10 triangle. Will it fall on the same parabola as the 3-4-5, or on the ones with a difference of two?

The image below shows parabolas for differences of 1, 2, and 8 between the longer side and hypotenuse, and point D is the 6-8-10 triangle, right there with 8-15-17 and others like it. 





I'm not sure you can swap this information for bread or ale at the local inn, but it's pretty interesting stuff.

On This Day in Math - April 24

  




Simplicibus itaque verbis gaudet Mathematica Veritas, cum etiam per se simplex sit Veritatis oratio.
(So Mathematical Truth prefers simple words
since the language of Truth is itself simple.)

~ Tycho Brahe


The 114th day of the year; this day begins a string of thirteen consecutive day numbers that are composite. There is no string of more composite year day numbers. The next such string of composite day numbers will include Halloween.

The sum of the first 114 digits of e after the decimal point, is prime. This is the third consecutive day number with this property.

114 is another of D R Kaprekar's Harshad (Joy-Giver) numbers, divisible by the sum of its digits.  Remembering that the famous Taxicab number of Ramanujan and Hardy, is also a Harshad number makes it easy to factor, since 1 + 7 + 2 + 9 = 19 is a factor.

114 is the sum of the first four hyperfactorials starting with zero, 0^0 + 1^1 + (2^2)(1^1) + (3^3)(2^2)(1^1) = 1+1+4+108 = 114.


The largest gap between two consecutive six digit primes is 114.

********Find more of these at Math Day of the Year Facts. *********************




EVENTS


1066 Halley's Comet heralded an invasion when it appeared over England. A monk spotted it and predicted the destruction of the country. The monk, Eilmer of Malmesbury (also known as Oliver due to a scribe's miscopying, or Elmer) was an 11th-century English Benedictine monk best known for his early attempt at a gliding flight using wings. He seems to have predicted the destruction of England when he saw the comet and wrote, "You've come, have you? – You've come, you source of tears to many mothers. It is long since I saw you; but as I see you now you are much more terrible, for I see you brandishing the downfall of my country." William of Malmesbury, who provides almost all the known information about Eilmer, writes that, in Eilmer's youth, he had read and believed the Greek fable of Daedalus. Thus, Eilmer fixed wings to his hands and feet and launched himself from the top of a tower at Malmesbury Abbey.*Wik (well, he got the invasion part right)





1610 Galileo comes to demonstrate his telescope but is poorly received.
from a Letter from Martin Horky to Kepler, April, 1610

Galileo Galilei, the mathematician of Padua, came to us in Bologna and he brought with him that spyglass through which he sees four fictitious planets. On the twenty-fourth and twenty-fifth of April I never slept, day and night, but tested that instrument of Galileo's in innumerable ways, in these lower as well as the higher [realms]. On Earth it works miracles; in the heavens it deceives, for other fixed stars appear double. Thus, the following evening I observed with Galileo's spyglass the little star that is seen above the middle one of the three in the tail of the Great Bear, and I saw four very small stars nearby, just as Galileo observed about Jupiter. I have as witnesses most excellent men and most noble doctors, Antonio Roffeni, the most learned mathematician of the University of Bologna, and many others, who with me in a house observed the heavens on the same night of 25 April, with Galileo himself present. But all acknowledged that the instrument deceived. And Galileo became silent, and on the twenty-sixth, a Monday, dejected, he took his leave from Mr. Magini very early in the morning. And he gave no thanks for the favors and the many thoughts, because, full of himself, he hawked a fable. Mr. Magini provided Galileo with distinguished company, both splendid and delightful. Thus the wretched Galileo left Bologna with his spyglass on the twenty-sixth.

Beneath the letter in German he has written, "Unknown to anyone, I have made an impression of the spyglass in wax, and when God aids me in returning home, I want to make a much better spyglass than Galileo's." *Timothy J. McGrew, Western Michigan Univ.

Len Fisher ‏@LenFisherScienc sent a clip that pointed out that Galileo's fellow Pisano, was one of those who refused to look through the glass at all:

*from "Weighing the Soul"


1676 In a letter to the Royal Society, Leeuwenhock describes what happens after he put pepper water in his study for three weeks and then observed it through his scope, "I looked upon it the 24th of April, 1676 and discerned to my great wonder, an incredible number of very small animals of divers kinds." *Lisa Jardine, Incredible Pursuits, pg 92

HT to Greg Priest

1800 The Library of Congress established . $5000 was appropriated for the purchase of such books as may be necessary for the use of Congress at the said city of Washington and for filling up a suitable apartment for containing them and for placing them therein." The first catalog, dated April 1802, listed 964 volumes and 9 maps. *VFR


In 1851, the first engineering society of importance in the U.S. was incorporated. The Boston Society of Civil Engineers was organized at an informal meeting on 26 Apr 1848, and its first regular meeting was held 3 Jul 1848. Its purpose was "promoting science and instruction in the department of civil engineering." In the following year, the national American Society of Civil Engineers and Architects was founded on 5 Nov 1852 in New York City. Earlier attempts in the U.S. to sustain an engineering society were unsuccessful, including those by the engineers of the Cincinnati & Charleston Railroad in 1836; engineers in Baltimore, Md. in 1839; and a society in Albany, N.Y. in 1841.





1897 The Chicago Section of the American Mathematical Society held its organizational meeting in Chicago under the chairmanship of E. H. Moore. It was the first section of the AMS. [Cajori, Historical Introduction to the Mathematical Literature, p. 34] *VFR

E H Moore



In 1925, Darwin's theory of evolution was reputed to be taught in Dayton, Tennessee, by teacher John Scopes, who used the high school textbook, Civic Biology by George Hunter. For this, Scopes, 24, was prosecuted under the Butler Act, a state law enacted in the previous month, on 21 Mar 1925. It prohibited the teaching of evolution in public schools. The trial , which began 10 Jul 1925) was used as a platform to challenge the legality of the statute. Scopes was supported by the American Civil Liberties Union. At its end, on 21 Jul 1925, Scopes was convicted and fined $100. On appeal, the state supreme court upheld the constitutionality of the 1925 law but acquitted Scopes on the technicality that he had been fined excessively. The law was not repealed until 17 May 1967. *TIS 

 the Butler Act was passed in Tennessee, on March 25, 1925. Butler later stated, "I didn't know anything about evolution ... I'd read in the papers that boys and girls were coming home from school and telling their fathers and mothers that the Bible was all nonsense." Tennessee governor Austin Peay signed the law to gain support among rural legislators, but believed the law would neither be enforced nor interfere with education in Tennessee schools.William Jennings Bryan thanked Peay enthusiastically for the bill: "The Christian parents of the state owe you a debt of gratitude for saving their children from the poisonous influence of an unproven hypothesis."  The Tennessee college in Clarksville is named for Governor Peay.  

It would remain the law in Tennessee until repealed on September 1, 1967. *Wik





In 1928, the fathometer was patented by Herbert Grove Dorsey (No. 1,667,540). His invention was an electro-mechanical sounding instrument that measured underwater depths by using a series of electrical sounds signals and their echoes. He coined the name fathometer. The same instrument could measure both very shoal water and very deep water. His fathometers not only improved hydrographic surveying but also were valuable to the maritime shipping industry by saving time over line soundings. His instruments helped delineate much of the continental shelf and slope of the United States and its territories as well as much of the deep sea, in particular the northeast Pacific Ocean, the mid-Atlantic shelf and slope, and Gulf of Mexico.*TIS

Dorsey and his fathometer




A model of 1862 Apollo viewed from the pole (top) and from the equator (bottom). The irregular shape of asteroids like 1862 Apollo means that photons adsorbed and re-emitted from the surface can produce a net torque that gradually makes the asteroids spin faster – what is known to astronomers as the "YORP" effect. Image credit: Mikko Kaasalainen and Josef Durech

1932 Minor Planet Apollo Discovered on April 24 by K. Reinmuth at Heidelberg. This object is named for the god of the Sun. Patrick Poitevin ‏@PatrickPoitevin
The prototype asteroid of the Apollo group. In 1932 it approached Earth to within 10.5 million km (0.07 AU), but was then lost until 1973. Apollo can come as close to Earth as 4.2 million km (0.028 AU) and also make near passes of Venus and Mars, whose orbits it crosses at perihelion and aphelion,respectively.*http://www.daviddarling.info


1949 Columbia issued a stamp honoring the mathematician Julio Garavito Armero (1865{1920). [Scott #573] *VFR [He is also on the 20,000 peso bank note] As an astronomer of the observatory, he did many useful scientific investigations such as calculating the latitude of Bogotá, studies about the comets which passed by the Earth between 1901 and 1910 (such as Comet Halley), and the 1916 solar eclipse (seen in the majority of Colombia). But perhaps the most important were his studies about celestial mechanics, which finally turned into studies about lunar fluctuations and their influence on weather, floods, polar ice, and the Earth's orbital acceleration (this was corroborated later). He worked also in other areas such as optics (this work was left unfinished at his death), and economics, by which he helped the country recover from the rough civil war. With this objective, he gave lectures and conferences in economics and the human factors which affected it, such as war or overpopulation. *Wik


1980 The winning number in the Pennsylvania lottery was 666. On this day a group of men bet some $20,000 on all combinations involving just 4 and 6. The state lost two million. In 1982 two men were convicted of a lottery fix. Ironically, on the day they went to prison, Delaware's daily number came up 555.




1981 first IBM personal computer was introduced.IBM's own Personal Computer (IBM 5150) was introduced in August 1981, only a year after corporate executives gave the go-ahead to Bill Lowe, the lab director in the company's Boca Raton, Fla., facilities. He set up a task force that developed the proposal for the first IBM PC. Early studies had concluded that there were not enough applications to justify acceptance on a broad basis and the task force was fighting the idea that things couldn't be done quickly in IBM. One analyst was quoted as saying that "IBM bringing out a personal computer would be like teaching an elephant to tap dance." During a meeting with top executives in New York, Lowe claimed his group could develop a small, new computer within a year. The response: "You're on. Come back in two weeks with a proposal." *IBM


1981 Apple Computer introduces its Apple IIc, a portable machine designed to have the same operating capacity as the standard IIe model. The machine came with 128 kilobytes of RAM and a 5 1/4 inch floppy disk drive. *CHM    Perfect for its time! *PB




In 1990, space shuttle Discover was launched from Cape Canaveral, carrying the Hubble Space Telescope to be placed into orbit. *TIS   The following day (4/25/90) the Hubble telescope would be deployed from Discoverer into orbit.  It would be almost another month (5/20/90) before the first image ("first light")  shows the 50% sharper images than Earth based images. 

The image is of the 1/4 sized replica on the courthouse lawn in Hubble's birthplace, Marshfield Missouri.




BIRTHS

1562 Xu Guang-qi ( April 24, 1562 - November 8, 1633 ,aged 71) was a Chinese mathematician who made Western mathematics available by translating works into Chinese. *SAU

Xu Guangqi with Matteo Ricci (left) From Athanasius Kircher's China Illustrata, 1667




1620 John Graunt(24 April 1620 – 18 April 1674)His book Natural and Political Observations Made upon the Bills of Mortality (1662) used analysis of the mortality rolls in early modern London as Charles II and other officials attempted to create a system to warn of the onset and spread of bubonic plague in the city. Though the system was never truly created, Graunt's work in studying the rolls resulted in the first statistically-based estimation of the population of London. It was his only book but it was the foundations of both statistics and demography. *VFR [A nice essay on his "Bills of Mortality" and life is at the Rice University Stats Page by Thompson. Some personal history is at The Renaissance Mathematicus





1750 Simon Antoine Jean Lhuilier (24 April 1750 in Geneva, Switzerland - 28 March 1840 in Geneva, Switzerland) His work on Euler's polyhedra formula, and exceptions to that formula, were important in the development of topology. Lhuilier also corrected Euler's solution of the Königsberg bridge problem. He also wrote four important articles on probability during the years 1796 and 1797. His most famous pupil was Charles-François Sturm who studied under Lhuilier during the last few years of his career in Geneva. *SAU He won the mathematics section prize of the Berlin Academy of Sciences for 1784 in response to a question on the foundations of the calculus. The work was published in his 1787 book Exposition elementaire des principes des calculs superieurs. It was in this book that he first introduced the "lim." (the period would soon fall out use) notation for the limit of a function. he wrote, "lim.\( \frac{\delta x}{\delta x} \). The symbol reappeared in 1821 in Cours d'Analyse by Augustin Louis Cauchy. *Florian Cajori, The History of Notations on the Calculus.





1863 Giovanni Vailati (24 April 1863 – 14 May 1909) was an Italian proto-analytic philosopher, historian of science, and mathematician. Vailata's main historical interests concerned mechanics, logic, and geometry, and he was an important contributor to a number of areas, including the study of post-Aristotelian Greek mechanics, of Galileo's predecessors, of the notion and rôle of definition in the work of Plato and Euclid, of mathematical influences on logic and epistemology, and of the non-Euclidean geometry of Gerolamo Saccheri. He was particularly interested in the ways in which what might be seen as the same problems are addressed and dealt with at different times.
His historical work was interrelated with his philosophical work, involving the same fundamental views and methodology. Vailati saw the two as differing in approach rather than subject matter, and believed that there should be co-operation between philosophers and scientists in the pursuit of historical studies. He also held that a complete history demanded that one take into account the relevant social background. *Wik




1899 Oscar Zariski (24 April 1899 in Kobrin, Russian Empire (now Belarus) - 4 July 1986 in Brookline, Massachusetts, USA) Zariski's work was on foundations of algebraic geometry using algebraic methods. He worked on the theory of normal varieties, local uniformisation and the reduction of singularities of algebraic varieties. *SAU


1919 David H. Blackwell (April 24, 1919 – July 8, 2010) American Statistician, President of the Institute of Mathematical Statistics. Many more honours were to come his way. He was elected Vice President of the American Statistical Association, Vice President of the International Statistical Institute, and Vice President of the American Mathematical Society. In 1965 he was elected to the National Academy of Sciences. He received the John von Neumann Theory Prize from the Operations Research Society of America in 1979 for his work in dynamic programming and the R A Fisher Award from the Committee of Presidents of Statistical Societies in 1986.*SAU
and a nice links for more information, with thanks to Dave Bee:
For the extensive “An Oral History With David Blackwell”, conducted by Nadine Wilmot in 2002 and 2003.




1947 Ovide Arino (24 April 1947 - 29 September 2003) mathematician working on delay differential equations. His field of application was population dynamics. He was a quite prolific writer, publishing over 150 articles in his lifetime. He also was very active in terms of student supervision, having supervised about 60 theses in total in about 20 years. Also, he organized or coorganized many scientific events. But, most of all, he was an extremely kind human being, interested in finding the good in everyone he met. *euromedbiomath.com


DEATHS

1572 Petrus Ramus (1515, 24 Apr 1572 [Wik gives his death on 26 August]).
(Pierre de La Ramée) French mathematician and logician who challenged Aristotelian philosophy. As early as in his Master of Arts thesis (1536) he held that quaecumque ab Aristotle dicta essent, commentitia esse ("everything which Aristotle said is invented or contrived"). His book Aristotelicae animadversiones (1543) led to a decree from Francis I (Mar 1544) prohibiting such teachings. Though the decree was rescinded three years later by Henry II, Ramus continued to draw hostility from other scholars. He was an early adherent of the Copernican system. Ramus was murdered during the St. Bartholomew's Day massacre, but his theories remained influential after his death. *TIS




1656 Thomas Fincke (6 January 1561 – 24 April 1656) was a Danish mathematician and physicist, and a professor at the University of Copenhagen for more than 60 years. His lasting achievement is found in his book Geometria rotundi (1583), in which he introduced the modern names of the trigonometric functions tangent and secant.
His son in law was the Danish physician and natural historian, Ole Worm, who married Fincke's daughter Dorothea.*Wik

 His most famous book Geometriae rotundi (1583), was intended as a textbook. Based on works of Ramus from whom he took the word 'radius', the book introduces the terms 'tangents' and 'secants' and Fincke devised new formulae such as the law of tangents.

Fincke's book was recommended by Clavius, Napier and Pitiscus all of whom adopted much from it. His other books on astronomy and astrology are of much less interest despite the fact that he was in touch with Brahe and Kepler. *SAU







1952 Hendrik Anthony Kramers (17 Dec 1894 - 24 Apr 1952 at age 57)Dutch physicist who, with Ralph de Laer Kronig, derived important equations relating the absorption to the dispersion of light. He also predicted (1924) the existence of the Raman effect, an inelastic scattering of light. Kramer's work covers almost the entire field of theoretical physics. He published papers dealing with mathematical formalism of quantum mechanics, and others on paramagnetism, magneto-optical rotation, ferro-magnetism, kinetic theory of gases, relativistic formalisms in particle theory, and on theory of radiation. His work shows outstanding mathematical skill and careful analysis of physical principles. *TIS

He worked with Niels Bohr to understand how electromagnetic waves interact with matter and made important contributions to quantum mechanics and statistical physics. *Wik






Credits :
*CHM=Computer History Museum
*FFF=Kane, Famous First Facts
*NSEC= NASA Solar Eclipse Calendar
*RMAT= The Renaissance Mathematicus, Thony Christie
*SAU=St Andrews Univ. Math History
*TIA = Today in Astronomy
*TIS= Today in Science History
*VFR = V Frederick Rickey, USMA
*Wik = Wikipedia
*WM = Women of Mathematics, Grinstein & Campbell